A hybrid ontology-based information extraction system
نویسندگان
چکیده
Information Extraction is the process of automatically obtaining knowledge from plain text. Because of the ambiguity of written natural language, Information Extraction is a difficult task. Ontology-based Information Extraction (OBIE) reduces this complexity by including contextual information in the form of a domain ontology. The ontology provides guidance to the extraction process by providing concepts and relationships about the domain. However, OBIE systems have not been widely adopted because of the difficulties in deployment and maintenance. The Ontology-based Components for Information Extraction (OBCIE) architecture has been proposed as a form to encourage the adoption of OBIE by promoting reusability through modularity. In this paper, we propose two orthogonal extensions to OBCIE that allow the construction of hybrid OBIE systems with higher extraction accuracy and a new functionality. The first extension utilizes OBCIE modularity to integrate different types of implementation into one extraction system, producing a more accurate extraction. For each concept or relationship in the ontology, we can select the best implementation for extraction, or we can combine both implementations under an ensemble learning schema. The second extension is a novel ontology-based error detection mechanism. Following a heuristic approach, we can identify sentences that are logically inconsistent with the domain ontology. Because the implementation strategy for the extraction of a concept is independent of the functionality of the extraction, we can design a hybrid OBIE system with concepts utilizing different implementation strategies for extracting correct or incorrect sentences. Our evaluation shows that, in the implementation extension, our proposed method is more accurate in terms of correctness and completeness of the extraction. Moreover, our error detection method can identify incorrect statements with a high accuracy.
منابع مشابه
Presenting a method for extracting structured domain-dependent information from Farsi Web pages
Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...
متن کاملSemi-automatic Domain Ontology Construction from Spoken Corpus in Tunisian Dialect: Railway Request Information
In this paper, we present a hybrid method for semi-automatic building of domain ontology from spoken dialogue corpus in Tunisian Dialect for the railway request information domain. The proposed method is based on a statistical method for term and concept extraction and a linguistic method for semantic relation extraction. This method consists of three fundamental phases, namely the corpus const...
متن کاملAn ontological hybrid recommender system for dealing with cold start problem
Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine and . We introduce an ontological hybrid RS where the ontology has been employed in its part while improving the ontology structure by its part. In this paper, a new hybrid approach is proposed based on the combination of demog...
متن کاملA protocol for constructing a domain-specific ontology for use in biomedical information extraction using lexical-chaining analysis
In order to do more semantics-based information extraction, we require specialized domain models. We develop a hybrid approach for constructing such a domain-specific ontology, which integrates key concepts from the protein-protein– interaction domain with the Gene Ontology. In addition, we present a method for using the domain-specific ontology in a discourse-based analysis module for analyzin...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Information Science
دوره 42 شماره
صفحات -
تاریخ انتشار 2016